Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1344972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425798

RESUMEN

Over the past several decades, a decreasing trend in solar radiation has been observed during the wheat growing season. The effects of shade stress on grain yield formation have been extensively studied. However, little information on shade stress's effects on protein formation warrants further investigation. Two wheat cultivars were grown under three treatments, no shade as the control group (CK), shading from the joint to the anthesis stage (S1), and shading from the joint to the mature stage (S2), to investigate the effects of shade stress on the free amino acids of the caryopsis and endosperm and protein accumulation during grain filling. The dry mass of caryopsis and endosperm was significantly decreased under shade stress, whereas Glu, Ser, Ala, and Asp and protein relative content increased during grain filling. The observed increases in total protein in S1 and S2 were attributed to the increases in the SDS-isoluble and SDS-soluble protein extracts, respectively. S1 improved polymer protein formation, but S2 delayed the conversion of albumins and globulins into monomeric and polymeric proteins. Moreover, shade stress increased the proportion of SDS-unextractable polymeric protein, which represented an increase in the degree of protein polymerization. The polymerization of protein interrelations between protein components and accumulation in caryopsis and endosperm provided novel insights into wheat quality formation under shade stress.

2.
Food Chem ; 441: 138392, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38211475

RESUMEN

Although wheat (Triticum aestivum L.) grain protein content is increased by shade stress, the relationship between the baking quality of wheat flour and protein composition and structure remains unclear. Here, we investigated the effects of shade stress on wheat flour protein composition and structure. The contents of the flour protein, α/ß-gliadins and disulfide and hydrogen bonds were significantly increased by shade stress. Glutenins, UPP%, and ß-sheet contents also increased, whereas that of α-helices decreased. Spearman correlations revealed that the flour protein content, Glu:Gli ratio, and disulfide, hydrogen, and ionic bonds can predict the specific volume and number of crumb cells in bread, whereas α/ß-gliadins content can predict the crumb cell wall thickness and diameter of bread. Under shade stress, variations in protein composition and structure help increase the specific volume and crumb cells number and decrease crumb cell wall thickness and diameter of bread, ultimately leading to improved baking quality.


Asunto(s)
Proteínas de Granos , Triticum , Triticum/química , Harina , Gliadina , Disulfuros , Pan
3.
Food Res Int ; 173(Pt 2): 113399, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803737

RESUMEN

Viscoelastic properties of gluten proteins critically determine the biscuit-making quality. However, cultivar genetics and light conditions closely regulate the composition of the gluten proteins. The impact of pre- and post-anthesis shading (60 %) on amino acid profile, gluten protein composition, secondary structure, dough performance, and biscuit-making quality were evaluated using four wheat cultivars that differ in gluten protein composition. Pre- and post-anthesis shading increased the contents of gliadin, by 35.8 and 3.1 %; glutenin, by 27.6 and 7.3 %; and total protein, by 21.7 and 10.6 %, respectively, compared with those of unshaded plants. Conversely, the ratios of glutenin/gliadin, ω-/(α,ß + Î³)-gliadin, and high-molecular-weight/low-molecular-weight glutenin subunits decreased with shading. Strong-gluten cultivars exhibited smaller declines in these parameters than weak-gluten cultivars. Secondary structure analysis of the wheat protein revealed that shading increased ß-sheet content but decreased ß-turn content. Changes in protein components and their secondary structures caused an increase in wet gluten content, dough development time, and gluten performance index, thereby decreasing the biscuit spread ratio. Shading stress increased the protein content and nutrition index but decreased the biological value of protein by 2.5 %. Transcriptomic results revealed that shading induced 139 differentially expressed genes that decreased carbohydrate metabolism and increased amino acid metabolism, involved in increased protein content. Thus, canopy shading improves dough performance and nutrition index by regulating the amino acid profiles, protein compositions, and secondary structures. The study provides key insights for achieving superior grain quality under global dimming.


Asunto(s)
Gliadina , Triticum , Triticum/química , Evaluación Nutricional , Glútenes/química , Aminoácidos/metabolismo
4.
Int J Biol Macromol ; 236: 123972, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906208

RESUMEN

Heavy haze-induced decreases in solar radiation represent an important factor that affects the structural properties of starch macromolecules. However, the relationship between the photosynthetic light response of flag leaves and the structural properties of starch remains unclear. In this study, we investigated the impact of light deprivation (60 %) during the vegetative-growth or grain-filling stage on the leaf light response, starch structure, and biscuit-baking quality of four wheat cultivars with contrasting shade tolerance. Shading decreased the apparent quantum yield and maximum net photosynthetic rate of flag leaves, resulting in a lower grain-filling rate and starch content and higher protein content. Shading decreased the starch, amylose, and small starch granule amount and swelling power but increased the larger starch granule amount. Under shade stress, the lower amylose content decreased the resistant starch content while increasing the starch digestibility and estimated glycemic index. Shading during the vegetative-growth stage increased starch crystallinity, 1045/1022 cm-1 ratio, starch viscosity, and the biscuit spread ratio, while shading during the grain-filling stage decreased these values. Overall, this study indicated that low light affects the starch structure and biscuit spread ratio by regulating the photosynthetic light response of flag leaves.


Asunto(s)
Almidón , Triticum , Almidón/metabolismo , Triticum/química , Amilosa/análisis , Fotosíntesis/fisiología , Grano Comestible/química , Hojas de la Planta/metabolismo
5.
Front Microbiol ; 13: 982109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569087

RESUMEN

Straw mulching and N fertilization are effective in augmenting crop yields. Since their combined effects on wheat rhizosphere bacterial communities remain largely unknown, our aim was to assess how the bacterial communities respond to these agricultural measures. We studied wheat rhizosphere microbiomes in a split-plot design experiment with maize straw mulching (0 and 8,000 kg straw ha-1) as the main-plot treatment and N fertilization (0, 120 and 180 kg N ha-1) as the sub-plot treatment. Bacterial communities in the rhizosphere were analyzed using 16S rRNA gene amplicon sequencing and quantitative PCR. Most of the differences in soil physicochemical properties and rhizosphere bacterial communities were detected between the straw mulching (SM) and no straw mulching (NSM) treatments. The contents of soil organic C (SOC), total N (TN), NH4 +-N, available N (AN), available P (AP) and available K (AK) were higher with than without mulching. Straw mulching led to greater abundance, diversity and richness of the rhizosphere bacterial communities. The differences in bacterial community composition were related to differences in soil temperature and SOC, AP and AK contents. Straw mulching altered the soil physiochemical properties, leading to greater bacterial diversity and richness of the rhizosphere bacterial communities, likely mostly due to the increase in SOC content that provided an effective C source for the bacteria. The relative abundance of Proteobacteria was high in all treatments and most of the differentially abundant OTUs were proteobacterial. Multiple OTUs assigned to Acidobacteria, Chloroflexi and Actinobacteria were enriched in the SM treatment. Putative plant growth promoters were enriched both in the SM and NSM treatments. These findings indicate potential strategies for the agricultural management of soil microbiomes.

6.
Front Plant Sci ; 13: 899387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247613

RESUMEN

Analyzing the contribution of nitrogen (N) uptake and its utilization in grain yield and protein quality-related traits in rice-wheat (RW) and soybean-wheat (SW) cropping systems is essential for simultaneous improvements in the two target traits. A field experiment with nine wheat genotypes was conducted in 2018-19 and 2019-20 cropping years to investigate N uptake and utilization-related traits associated with high wheat yield and good protein quality. Results showed that N uptake efficiency (NUpE) in the RW cropping system and N utilization efficiency (NUtE) in the SW cropping system explained 77.6 and 65.2% of yield variation, respectively, due to the contribution of fertile spikes and grain number per spike to grain yield varied depending on soil water and N availability in the two rotation systems. Lower grain protein content in the RW cropping system in comparison to the SW cropping system was mainly related to lower individual N accumulation at maturity, resulting from higher fertile spikes, rather than N harvest index (NHI). However, NHI in the SW cropping system accounted for greater variation in grain protein content. Both gluten index and post-anthesis N uptake were mainly affected by genotype, and low gluten index caused by high post-anthesis N uptake may be related to the simultaneous increase in kernel weight. N remobilization process associated with gluten quality was driven by increased sink N demand resulting from high grain number per unit area in the RW cropping system; confinement of low sink N demand and source capability resulted in low grain number per spike and water deficit limiting photosynthesis of flag leaf in the SW cropping system. CY-25 obtained high yield and wet gluten content at the expense of gluten index in the two wheat cropping systems, due to low plant height and high post-anthesis N uptake and kernel weight. From these results, we concluded that plant height, kernel weight, and post-anthesis N uptake were the critically agronomic and NUE-related traits for simultaneous selection of grain yield and protein quality. Our research results provided useful guidelines for improving both grain yield and protein quality by identifying desirable N-efficient genotypes in the two rotation systems.

7.
Food Chem ; 396: 133661, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849987

RESUMEN

Phenolic compounds in cereal and legume seeds show numerous benefits to human health mainly because of their good antioxidant capacity. However, long-term storage and some improper preservation may reduce their antioxidant potential. It is necessary to retain or modify the phenolic antioxidants with improved technology before consumption. Radiation processing is usually applied as a physical method to extend the shelf life and retain the quality of plant produce. However, the effect of radiation processing on phenolic antioxidants in cereal and legume seeds is still not well understood. This review summarizes recent research on the effect of radiation, including ionizing and nonionizing radiation on the content and profile of phenolic compounds, and antioxidant activities in cereal and legume seeds, the influencing factors and possible mechanisms are also discussed. The article will improve the understanding of radiation effect on phenolic antioxidants, and promote the radiation modification of natural phenolic compounds in cereal and legume seeds and other sources.


Asunto(s)
Antioxidantes , Fabaceae , Antioxidantes/análisis , Grano Comestible/química , Humanos , Fenoles/análisis , Semillas/química , Verduras
8.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3337-3344, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36601839

RESUMEN

We conducted a two-factor split-plot experiment to examine the alteration of soil inorganic phosphorus forms and phosphorus availability under straw mulching and phosphorus fertilizer rates. The main factor was straw mulching and non-mulching, while the sub-factor was phosphorus supply rates, including 0, 75, and 120 kg·hm-2. We analyzed the characteristics of phosphorus adsorption-desorption, the content of inorganic phosphorus components and their relationship with available phosphorus in hilly upland purple soil in Sichuan. Results showed that compared with the non-mulching, the maximum phosphorus adsorption capacity of straw mulching was notably decreased by 7.7% and 7.4% in the two experimental years from 2018 to 2020. The degree of phosphorus saturation and readily desorbable phosphorus of straw mulching were remarkably increased by 35.4% and 21.6% in 2019 and 18.6% and 35.2% in 2020, respectively. The maximum buffer capacity of phosphorus was not different between straw mulching and non-mulching. The maximum phosphorus adsorption capacity and maximum buffer capacity of phosphorus were significantly lower, and the degree of phosphorus saturation was notably higher in the phosphorus application treatment than that under no phosphorus treatment. The readily desorbable phosphorus increased with the increases of phosphorus rates. The contents of dicalcium phosphate (Ca2-P), octa-calcium phosphate (Ca8-P) and iron phosphorus (Fe-P) in straw mulching treatment were notably higher than those in non-mulching treatment, whereas the content of aluminum phosphorus (Al-P) significantly lower under the straw mulching. Meanwhile, the contents of occluded phosphate (O-P) and apatite (Ca10-P) tended to decrease in the straw mulching compared with that under the non-mulching. Phosphorus application increased the content of different inorganic phosphorus components. Compared with the non-mulching, soil available phosphorus content and the phosphorus activation coefficient of straw mulching remarkably increased by 23.2% and 21.3% in 2019, and 9.6% and 8.9% in 2020, respectively. Soil available phosphorus content and phosphorus activation coefficient increased with the increases of phosphorus rate. Results of regression analysis showed that the contribution of inorganic phosphorus components to the availability of available phosphorus in purple soil was Ca2-P > Fe-P > Al-P > Ca8-P > Ca10-P > O-P. Therefore, straw mulching combined with a reasonable phosphorus fertilizer rate could promote the decomposition and transformation of insoluble soil phosphorus to moderately active or easily absorbed phosphorus forms, reduce soil phosphorus adsorption, stimulate soil phosphorus desorption, and improve soil phosphorus availability. Based on the economic benefits, phosphate fertilizer application at the rate of 75 kg·hm-2 combined with straw mulching was recommended in Sichuan hilly dryland, which would be more beneficial in improving soil phosphorus availability.


Asunto(s)
Agricultura , Suelo , Agricultura/métodos , Fósforo , Fertilizantes , Fosfatos , China
9.
Front Microbiol ; 12: 658668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093473

RESUMEN

Diazotrophs that carry out the biological fixation of atmospheric dinitrogen (N2) replenish biologically available nitrogen (N) in soil and are influenced by the input of inorganic and organic substrates. To date, little is known about the effects of combined organic substrate addition and N fertilization on the diazotroph community composition and structure in purple soils. We investigated the effects of N fertilization and straw mulching on diazotroph communities by quantifying and sequencing the nifH gene in wheat rhizosphere. The abundance and richness of diazotrophs were greater the higher the fertilization level in the mulched treatments, whereas in the nonmulched treatments (NSMs), richness was lowest with the highest N fertilization level. The abundance and α-diversity of diazotrophs correlated with most of the soil properties but not with pH. At the genus level, the relative abundances of Azospirillum, Bacillus, and Geobacter were higher in the NSMs and those of Pseudacidovorax, Skermanella, Azospira, Paraburkholderia, Azotobacter, Desulfovibrio, Klebsiella, and Pelomonas in the mulched treatments. The differences in community composition between the mulched and the NSMs were associated with differences in soil temperature and soil organic carbon and available potassium contents and C:N ratio. Overall, straw mulching and N fertilization were associated with changes in diazotroph community composition and higher abundance of nifH gene in alkaline purple soils.

10.
AMB Express ; 11(1): 52, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33825988

RESUMEN

Microbe-mediated ammonia oxidation is a key process in soil nitrogen cycle. However, the effect of maize straw mulching on the ammonia oxidizers in the alkaline purple soil remains largely unknown. A three-year positioning experiment was designed as follows: straw mulching measures as the main-plot treatment and three kinds of nitrogen application as the sub-plot treatment. We found the contents of soil organic carbon (SOC), total nitrogen (TN), available potassium (AK), available nitrogen (AN), available phosphorus (AP), and NH4+-N were increased after straw mulching and nitrogen application in alkaline purple soil, so did the amoA genes abundance of ammonia-oxidizing archaeal (AOA) and bacterial (AOB). Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that Thaumarchaeote (448-bp T-RF) was dominated the AOA communities, whereas Nitrosospira sp (111-bp T-RF) dominated the AOB communities. The community compositions of both AOA and AOB were altered by straw mulching and nitrogen application in alkaline purple soil, however, the AOB communities was more responsive than AOA communities to the straw mulching and nitrogen application. Further analysis indicated that SOC and AP were the main factors affecting the abundance and community compositions of AOA and AOB in alkaline purple soil. The present study reported that straw mulching and nitrogen strategies differently shape the soil ammonia oxidizers community structure and abundance, which should be considered when evaluating agricultural management strategies regarding their sustainability and soil quality.

11.
J Exp Bot ; 70(1): 101-114, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982626

RESUMEN

Soybean seeds contain higher concentrations of oil (triacylglycerol) and fatty acids than do cereal crop seeds, and the oxidation of these biomolecules during seed storage significantly shortens seed longevity and decreases germination ability. Here, we report that diethyl aminoethyl hexanoate (DA-6), a plant growth regulator, increases germination and seedling establishment from aged soybean seeds by increasing fatty acid metabolism and glycometabolism. Phenotypic analysis showed that DA-6 treatment markedly promoted germination and seedling establishment from naturally and artificially aged soybean seeds. Further analysis revealed that DA-6 increased the concentrations of soluble sugars during imbibition of aged soybean seeds. Consistently, the concentrations of several different fatty acids in DA-6-treated aged seeds were higher than those in untreated aged seeds. Subsequently, quantitative PCR analysis indicated that DA-6 induced the transcription of several key genes involved in the hydrolysis of triacylglycerol to sugars in aged soybean seeds. Furthermore, the activity of invertase in aged seeds, which catalyzes the hydrolysis of sucrose to form fructose and glucose, increased following DA-6 treatment. Taken together, DA-6 promotes germination and seedling establishment from aged soybean seeds by enhancing the hydrolysis of triacylglycerol and the conversion of fatty acids to sugars.


Asunto(s)
Caproatos/farmacología , Ácidos Grasos/metabolismo , Germinación , Reguladores del Crecimiento de las Plantas/farmacología , Plantones/crecimiento & desarrollo , Azúcares/metabolismo , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Semillas/fisiología , /metabolismo
12.
Sci Rep ; 8(1): 11928, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093727

RESUMEN

Basis for the effects of nitrogen (N) on wheat grain storage proteins (GSPs) and on the establishment of processing quality are far from clear. The response of GSPs and processing quality parameters to four N levels of four common wheat cultivars were investigated at two sites over two growing seasons. Except gluten index (GI), processing quality parameters as well as GSPs quantities were remarkably improved by increasing N level. N level explained 4.2~59.2% and 10.4~80.0% variability in GSPs fractions and processing quality parameters, respectively. The amount of N remobilized from vegetative organs except spike was significantly increased when enhancing N application. GSPs fractions and processing quality parameters except GI were only highly and positively correlated with the amount of N remobilized from stem with sheath. N reassimilation in grain was remarkably strengthened by the elevated activity and expression level of glutamine synthetase. Transcriptome analysis showed the molecular mechanism of seeds in response to N levels during 10~35 days post anthesis. Collectively, we provided comprehensive understanding of N-responding mechanisms with respect to wheat processing quality from N source to GSPs biosynthesis at the agronomic, physiological and molecular levels, and screened candidate genes for quality breeding.


Asunto(s)
Industria de Procesamiento de Alimentos/métodos , Nitrógeno/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Semillas/fisiología , Triticum/fisiología , China , Grano Comestible , Estudios de Asociación Genética , Fitomejoramiento , Proteínas de Plantas/genética , Transcriptoma
13.
Ying Yong Sheng Tai Xue Bao ; 26(4): 1162-70, 2015 Apr.
Artículo en Chino | MEDLINE | ID: mdl-26259459

RESUMEN

Following a two-factor split plot design, two popular varieties ( Neimai836 and Chuanmail04) were used to study the effects of waterlogging at four growth stages (seedling, jointing, booting and anthesis) on wheat growth and yield formation during two growing seasons (2011-2012 and 2012-2013). The resulted showed that the greatest yield penalty occurred when waterlogging happened at the seedling stage (10% - 15% decrease), and it was alleviated when waterlogging happened at the other stages. Waterlogging during the seedling stage significantly reduced SPAD of 2nd-6th leaves, tillers and spike number per plant, productive ears, dry matter accumulation after flowering and dry matter at maturity. Waterlogging during the jointing stage decreased SPAD of 4th-7th leaves, and waterlogging during the booting stage reduced the SPAD of top 2nd, 3rd, 4th leaves. Waterlogging during the jointing and booting stages reduced the SPAD of flag leaf, the rate of grain filling during the gradual increase stage, the average filling rate and the 1000-grain mass. Waterlogging during the flowering stage produced limited change in yield. Therefore, waterlogging during the seedling stage was identified to have the most critical influence on wheat production under wheat/rice cropping rotations in Sichuan Province.


Asunto(s)
Inundaciones , Triticum/fisiología , Agua , China , Grano Comestible , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...